造影剤による乳腺 proton MR spectroscopyの cholineピーク減少に関する基礎的研究

水越 和歌^{1)*},小澤 栄人¹⁾,桜井 靖雄²⁾,
妹尾 大樹²⁾,井上 快児³⁾,木村 文子¹⁾
1)埼玉医科大学 国際医療センター 画像診断科
2)埼玉医科大学 国際医療センター 中央放射線部
3)埼玉医科大学 大学病院 放射線科

The effects of paramagnetic contrast media on choline peak in proton MR spectroscopy of the breast: a preliminary study

Waka Mizukoshi^{1)*}, Eito Kozawa¹⁾, Yasuo Sakurai²⁾, Taiki Senoo²⁾, Kaiji Inoue³⁾ and Fumiko Kimura¹⁾

¹⁾Department of Diagnostic Radiology, Saitama International Medical Center, Saitama Medical University

²⁾Department of Radiology, Saitama International Medical Center, Saitama Medical University

³⁾Department of Radiology, Saitama Medical University Hospital, Saitama Medical University

Administration of contrast media before proton magnetic resonance spectroscopy (¹H MRS) may allow more accurate placement of the volume of interest in breast tumors, but some studies have suggested their use decreases the choline peak. We studied the impact of contrast use to determine which method would reduce the choline peak the least.

Phantoms containing 1, 5, and 10 mM concentrations of choline were prepared in phosphate-buffered saline and mixed with contrast media in concentrations of 0, 0.2, 0.4, and 0.6 mM. We used 2 different media: one being a negatively-charged diethylenetriaminepentaacetic acid gadolinium (Gd-DTPA), and the other a neutral gadoteridol (Gd-HP-DO3A). We studied all phantoms by single voxel ¹H MRS with a repetition time (TR) of 2,000 msec and an echo time (TE) of 136 or 270 msec.

Gd-DTPA tended to induce an increase in the peak integral and amplitude at lower concentrations and a decrease at a higher concentration, whereas Gd-HP-DO3A tended to induce an increase in the peak integral and amplitude at lower concentrations with no definite decrease at higher concentrations. Neither contrast medium induced a definite change in peak width. The reduction of the choline peak integral and amplitude at TE of 270 msec was greater than at TE of 136 msec.

Therefore, we recommend the use of the neutral contrast agent and short TE in ¹H MRS studies of breast tumors to avoid underestimation of the level of choline peaks.

J Saitama Medical University 2015; 41(2): 127-133 (Received March 25, 2014 / Accepted September 11, 2014)

Key words: MR spectroscopy, breast tumor, choline peak, contrast media

^{*}著者:埼玉医科大学 国際医療センター 画像診断科 〒 350-1298 埼玉県日高市山根 1397-1 Tel: 042-984-4520 Fax: 042-984-4520 E-mail: wsaito@saitama-med.ac.jp 〔平成 26 年 3 月 25 日受付 / 平成 26 年 9 月 11 日受理〕 ○著者全員は本論文の研究内容について他者との利害関係を有しません.

緒言

Proton magnetic resonance spectroscopy (¹H MRS)は, 任意に設定した関心領域(volume of interest, VOI)内の 代謝を測定する検査法である¹⁾. 乳腺腫瘍では,正常乳 腺組織と比べて細胞膜代謝が増加するため,¹H MRS では細胞膜脂質成分であるcholineのピークが描出さ れる²⁾. 通常の乳腺腫瘍のMRI検査では,造影 MRIを 用いて腫瘍の形態や血行動態を評価し³⁾,拡散強調 画像で腫瘍内の拡散抑制の程度を調べ^{4,5)},良悪性診断 を行っているが,¹H MRSを追加してcholineピークの 有無や定量を行うことにより,特異度が上昇すること が報告されている^{6,7)}. また,化学療法反応性のモニタ リング法として¹H MRSが有用であることも報告され ている⁸⁾.

乳腺腫瘍の¹H MRSでは、VOIは正常乳腺や周囲 脂肪組織の混入を避け、可能な限り多くの腫瘍細胞 成分を含むように設置する必要がある⁹. 乳腺腫瘍は 単純 MRIでは正常乳腺組織と等信号を示すため,単 純 MRIを指標にすると、正常乳腺組織を避けて腫瘍 上のみにVOIを設置することが困難なことが多い. 一方,乳腺腫瘍は造影剤により良好に造影され,正常 乳腺組織との信号比が上昇するため、造影後のMRI を指標としてVOIの設置位置を決定するのが一般的 となっている¹⁰⁾. しかし, 造影後に¹H MRSを行うと, 造影剤とcholineの相互作用によりcholineピークが 低下し,結果を過小評価する可能性が指摘されて いる¹⁰⁻¹³⁾. また,造影剤がcholineピークに与える影響 の強さは、使用する造影剤の種類や撮像時の繰り返 し時間 (repetition time; TR) やエコー時間 (echo time; TE) によって変化することも報告されている¹²⁻¹⁵⁾. 乳腺腫瘍の¹H MRSで, cholineピークの過小評価を 防ぐためには、造影剤の影響によるcholineピークの 低下が最も低い撮影条件を選択して行う必要がある.

この研究の目的は、造影剤によりcholineピークの 受ける影響が、造影剤の種類・濃度、撮影時のTEに よりどのように変化するかについて、溶液を用いた基 礎的実験を行って調べ、最も低下率の少ない測定条件 について検討することである.

方 法

< choline・造影剤混合溶液>

cholineと造影剤を混合した溶液を作成した. cholineは粉末塩化cholineを使用し,過去に報告 されている乳腺腫瘍内のcholine濃度^{16,17)}を参考に して溶液内の濃度は1,5,10 mMとし,リン酸buffer を加えて7.4 ppmに調合した.これらの溶液内に, イオン性造影剤(Gd-DTPA,ガドペンテト酸メグル ミン;マグネビスト[®],バイエル薬品)と,非イオン性 造影剤(Gd-HP-DO3A,ガドテリドール;プロハンス[®], エーザイ)を混合した. 造影剤濃度は過去に報告さ れている腫瘍内造影剤濃度^{15,18)}を参考にし, 0, 0.2, 0.4, 0.6 mMに調合した. 作成した溶液は30 mlポリ エチレン容器に封入し,約25℃にて保管した.

<¹ H MRS >

使用MRI装置は1.5 tesla 装置(Avanto, Siemens, Erlangen, Germany)で,送信コイルにはbody coil, 受信コイルにはtwo-channel breast array coilを使用 した. 730 mlのポリプロピレン容器の中央にcholine と造影剤の混合溶液を含む容器を固定し、造影後 の状態を模擬する乳腺ファントムとして使用した. なお,周囲の磁場の均一性を保つために,730 ml のポリプロピレン容器内には水道水を充満した. ファントム内部の温度を一定にするため、実験前 にファントムを測定室内(室温約23℃)に1時間以 上静置し、水道水の温度が約25℃の状態で実験を 行った¹⁹⁾. 当院で実際の臨床で行っている乳腺腫瘍 ¹H MRSと同様に, 撮像シークエンスは point resolved spectroscopy 法, TR = 1,730 msec, TE, 270 msec, 加算 210 回, スペクトル測定周波数幅 1,000 Hz, デー タポイント1024で行った.水抑制はバンド幅50 Hzの chemical-shift-selective 法を用いた. VOIサイズは15 × 15 × 15 (mm) で, VOI 内に溶液以外が含まれない ように設置し、シミングは水の半値幅が約10Hzに なるよう手動で行った.得られたデータから,Syngo software (Siemens, Erlangen, Germany) を用いスペ クトルを作成した.スペクトル作成条件は、ウィン ドウ幅 600 msecの Hanning フィルターを用い, ゼロ フィリングによりデータポイントを1,024から2,048 へ拡大, ガウス関数によるカーブフィッティング, ベースライン補正及び自動位相補正を用いて行った. 得られたスペクトルの3.2 ppm上に認められるピーク をcholineピークとし、cholineピークのintegral (ピー ク下面積), amplitude (ピーク高), width (ピーク半値 幅)をsoftware上で計測した. 1つの溶液に対する¹H MRSは3回施行し、3回の平均を計測値とした.また、 同様の測定をTE=136 msecを用いて行った.

<評価項目>

造影剤によるcholineピークの変化が造影剤濃度に よりどのように変化するかを調べるため、以下のよう に変化率: △(%)を計算した.

- \triangle Ic (%) = (Ic I₀) \angle I₀
- $\triangle \operatorname{Ac}(\%) = (\operatorname{Ac} \operatorname{A}_0) \nearrow \operatorname{A}_0$
- $\triangle \operatorname{Wc}(\%) = (\operatorname{Wc} \operatorname{W}_0) / \operatorname{W}_0$

Ic: integral, Ac: amplitude, Wc: width, I₀: 造影剤 濃度0 mMでのintegral, A₀: 造影剤濃度0 mMでの amplitude, W₀: 造影剤濃度0 mMでのwidth.

イオン性造影剤と非イオン性造影剤で,造影剤濃度 による choline ピークの変化率⊿(%)が異なるか否か, TE = 270 (ms), 136 (ms)で変化率⊿(%)が異なるか 否かについて, Wilcoxon 順位和検定を用い, p < 0.05 を有意差ありとして調べた. 使用した統計ソフトは JMP 9.0.2 (SAS Institute Inc., Cary, NC, USA) である.

結果

< choline 濃度上昇による choline ピークの amplitude, integral, widthの変化>

TE = 270 msec での choline 濃度 1, 5, 10 mM OA_0 は 0.81±0.11, 2.42±0.11, 5.35±0.11(平均值±標準誤 差), L₀は5.93±1.03, 20.3±1.16, 47.0±0.92(平均 値±標準誤差), W₀は, 6.87±0.13, 7.87±0.13, 8.27 ± 0.13 (平均値±標準誤差)であり, choline 濃度上昇 とともに増加が認められた(Fig. 1A-C). TE = 136 msec での choline 濃度 1, 5, 10 mM の A₀は 0.92 ± 0.45, 3.76±0.45, 7.31±0.45(平均値±標準誤差), I₀は4.80 ±1.83, 22.7±1.83, 44.0±1.83(平均值±標準誤差), W_0 は4.87±0.06, 5.30±0.10, 5.67±0.12(平均値± 標準誤差)であり, choline 濃度上昇とともに増加が認 められた (Fig. 1D-F). A_0 はTE = 270 msecよりTE = 136 msecで高値を示す傾向があり(Fig. 1B, E), W₀は TE = 136 msecよりTE = 270 msecで高値を示す傾向 があったが (Fig. 1C, F), 統計的有意差は認められな かった(p≧0.05).

<TE = 270 msecでの造影剤濃度によるcholineピーク のamplitude, integral, widthの変化>

TE = 270 msecでのイオン性造影剤の⊿ Ic (%)は, 造影剤0.2 mMで61.7 ± 33.2, 0.4 mMで38.3 ± 10.8, 0.6 mMで-13.7±13.3 (平均値±標準誤差)であり, 造影剤低濃度では増加,高濃度では低下する傾向が 見られた (Fig. 2A). 非イオン性造影剤の⊿ Ic (%) は, 造影剤 0.2 mM で 67.3 ± 35.8, 0.4 mM で 102.7 ± 27.0, 0.6 mMで86±37.1 (平均値±標準誤差)であり、造影 剤低濃度では増加したが,高濃度での低下は見られな かった (Fig. 2A). TE = 270 msec でのイオン性造影剤 の⊿Ac(%)は、造影剤0.2 mMで99.0±41.2, 0.4 mM で48.7±27.4,0.6 mMで-26.3±19.8 (平均値±標準 誤差) であり,造影剤低濃度では増加,高濃度では低 下する傾向が見られた (Fig. 2C). 非イオン性造影剤の ⊿Ac(%)は、造影剤0.2 mMで105.8±61.1,0.4 mMで 92.3±53.3,0.6 mMで124.2±71.7(平均値±標準誤差) であり、造影剤低濃度では増加し、高濃度での低下は 見られなかった (Fig. 2C).TE = 270 msecでのイオ ン性造影剤の⊿Wc(%)は、造影剤0.2 mMで-7.3 ± 11.7, 0.4 mM $\mathcal{C} - 12.3 \pm 11.5$, 0.6 mM $\mathcal{C} - 16.0 \pm 4.7$ (平均値±標準誤差)であり,造影剤低濃度による一 定の変化は認められなかった (Fig. 2E). 非イオン性

Fig. 1. A) Integrals of choline peak (I₀) versus concentration of aqueous solutions of choline at echo time of 270 msec. B) Amplitudes of choline peak (A₀) versus concentration of aqueous solutions of choline at echo time of 270 msec. C) Width of choline peak (W₀) versus concentration of aqueous solutions of choline at echo time of 270 msec. D) I₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. E) A₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) K₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. F) W₀ versus concentration of aqueous solutions of choline at echo time of 136 msec. Solid lines represent the linear regression of the data.

造影剤の⊿Ic(%)は,造影剤0.2 mMで−15.3±7.3, 0.4 mMで−19.7±8.0, 0.6 mMで−12.7±8.7(平均値 ±標準誤差)であり,造影剤低濃度による一定の変化 は認められなかった(Fig. 2E).

<TE = 136 msecでの造影剤濃度によるcholineピーク のamplitude, integral, widthの変化>

TE = 136 msecでのイオン性造影剤の \triangle Ic (%) は, 造影剤0.2 mMで41.0 ± 22.2, 0.4 mMで27.0 ± 7.6, 0.6 mMで5.7 ± 17.9 (平均値±標準誤差)であり,造影 剤低濃度では増加,高濃度では低下する傾向が見 られた (Fig. 2B). 非イオン性造影剤の \triangle Ic (%) は, 造影剤0.2 mMで58.0 ± 16.9, 0.4 mMで66.7 ± 5.0, 0.6 mMで49.0 ± 20.0 (平均値±標準誤差)であり, 造影剤低濃度では増加し,高濃度での低下は認め られなかった (Fig. 2B). TE = 136 msec でのイオン性 造影剤の \triangle Ac (%) は,造影剤 0.2 mM で60.0 ± 52.3, 0.4 mM で39.0 ± 9.8, 0.6 mM で23.0 ± 18.4 (平均値± 標準誤差) であり,造影剤低濃度では増加,高濃度で は低下する傾向が認められた (Fig. 2D). 非イオン性 造影剤の \triangle Ac (%) は,造影剤 0.2 mM で64.0 ± 24.6, 0.4 mM で48.3 ± 12.7, 0.6 mM で56.3 ± 24.7 (平均値± 標準誤差) であり,造影剤低濃度では増加したが,高 濃度での低下は認められなかった (Fig. 2D). TE = 136 msec でのイオン性造影剤の \triangle Wc (%) は,造影剤 0.2 mM で18.7 ± 7.4, 0.4 mM で - 9.7 ± 4.9, 0.6 mM で - 7.7 ± 4.8 (平均値±標準誤差) であり,造影剤濃 度による一定の変化は認められなかった (Fig. 2F). 非イオン性造影剤の \triangle Wc (%) は,造影剤 0.2 mM で

Fig. 2. A) Plots showing changes in the integral of choline peaks (∠Ic) in the presence of diethylenetriaminepentaacetic acid gadolinium (Gd-DTPA, broken line) and gadoteridol (Gd-HP-DO3A, solid line) at echo time of 270 msec. B) Plots showing ∠Ic in the presence of Gd-DTPA (broken line) and Gd-HP-DO3A (solid line) at echo time of 136 msec. C) Plots showing changes in amplitude of choline peaks (∠Ac) in the presence of Gd-DTPA (broken line) and Gd-HP-DO3A (solid line) at echo time of 270 msec. D) Plots showing ∠Ac in the presence of Gd-DTPA (broken line) and Gd-HP-DO3A (solid line) at echo time of 136 msec. E) Plots showing changes in width of choline peaks (∠Wc) in the presence of Gd-DTPA (broken line) and Gd-HP-DO3A (solid line) at echo time of 270 msec. F) Plots showing ∠Wc in the presence of Gd-DTPA (broken line) and Gd-HP-DO3A (solid line) at echo time of 136 msec. Values are mean ± one standard error (SEM).

- 3.0 ± 7.2, 0.4 mMで - 3.6 ± 0.9, 0.6 mMで - 5.0
 ± 6.1 (平均値±標準誤差)であり,造影剤濃度による
 一定の変化は認められなかった (Fig. 2F).

造影剤によるcholineピークのintegral, amplitudeの 低下はTE = 136 msecと比べTE = 270 msecで大きい 傾向が認められた(Fig. 2A-D).しかし,統計学的有意 差は認められなかった($p \ge 0.05$).

考察

乳腺腫瘍のMRIによる良悪性診断は、造影 MRIでの 形態評価やダイナミックMRIでの血行動態評価を行い、 感度は88-100%と良好であるが、特異度は37-97% と報告によってばらつきが大きい^{3,20,21)}. 拡散強調 画像のADC値を用いた良悪性診断も試みられて いるが、オーバーラップが大きいことから診断に苦 慮することがある^{4,5}. 乳腺腫瘍の¹H MRSは,細胞 膜代謝の指標となる choline ピークの有無や定量で良 悪性診断を行い、通常のMRIに追加することにより 診断能が向上すると報告されている^{6,7)}.乳腺腫瘍の ¹H MRSでは、MRIを参照して腫瘍上に関心領域(VOI) を設置し, 腫瘍のcholineピークを測定する. 造影剤 を使用しないMRIでは、多くの乳腺腫瘍は正常乳腺 組織と等信号を示すため、VOIを正しく腫瘍上に設置 することが困難である. Kawaiらは、単純 MRIを参照 して設置したVOIの約35%は、腫瘍の充実成分から はずれた位置に置かれていたと報告している¹⁰⁾. この ため、乳腺腫瘍の¹H MRSでは、造影剤により腫瘍と 周囲乳腺組織のコントラストを上昇させた後に、VOI を腫瘍上に設置している⁹. しかし,造影後に¹H MRS を行うと、造影剤によりcholineピークが低下し、結果 を過小評価する可能性が報告されている¹⁰⁻¹³⁾. Joeらは 1.5T装置で非イオン性造影剤を使用し造影前後に乳腺 腫瘍¹H MRSを施行したところ,造影後にcholine 含有 物質のamplitudeが約20%低下したと報告している¹¹⁾. Lenkinskiらは3T装置で溶液やラットを用いた実験 を行い、イオン性造影剤によってcholine 含有物質の integralが約40%低下したと報告している¹²⁾. これらの 点から、¹H MRSは造影前に行うべきか造影後に行う べきか議論があるが、造影前後に乳腺腫瘍¹H MRSを 施行したKousiらの検討では、造影前¹H MRSは造影 後¹H MRSに比べ感度が36%,特異度が5%低く,造影 剤使用によるcholineピーク低下の弊害より、使用せ ずにVOIの位置ずれを来す弊害のほうが大きかった と結論づけている⁹. よって,乳腺腫瘍¹H MRSを施行 する場合は、造影剤を使用後に、腫瘍上に正確にVOI を設置し、造影剤による低下率が最小となる撮像条件 を用いて施行することがもっとも有用と考えられる. 我々の今回の溶液実験を用いた基礎的研究では、造影 剤による choline ピーク低下率が最も少ない撮影方法 の検討を目的とした.

MRI 造影剤によるcholine ピークへの影響は,ガドリ ニウム内の不対電子とcholineの陽電荷の間で起きる 双極子-双極子反応によるT1,T2短縮と,造影剤の 磁化率効果によるT2短縮,T2*短縮が原因と考えら れている¹⁸⁾.T1短縮によりcholine ピークのamplitude, integral は上昇し¹²⁾,T2短縮によりamplitude, integral は低下,T2*短縮によりwidthが上昇する^{22,23)}.また, 造影剤が低濃度ではT1短縮優位,高濃度ではT2短縮 優位になること¹⁸⁾,造影剤の種類は,負の電荷を持つ イオン性造影剤は非イオン性造影剤よりも,陽電荷を 持つcholine との双極子-双極子反応が強いことが知 られている^{12,13)}.さらに,T1短縮は短いTRの撮像法 (T1強調画像)で,T2短縮は,長いTEの撮像法(T2強 調画像)でより強く認められることが知られている¹⁸⁾.

今回の我々の溶液実験でも、amplitude, integralは 造影剤低濃度では上昇し、高濃度では低下し、低下 率はイオン性造影剤、長いTEでより大きいという結 果が得られた.この結果から、乳腺腫瘍の¹H MRSに おいてcholineピーク低下による過小評価を防ぐため には、短いTEを使用した撮像法が有用であると考え られた.ただし、乳腺腫瘍の¹H MRSでは、周囲に豊 富に認められる脂肪組織からの信号の影響を減少させ るために、比較的長いTE(>100 msec)を使用する必 要があるため⁹、今回我々が使用した136 msec 程度が 有用であると考えられる.比較的長いTEを使用する 場合にイオン性造影剤を使用すると、cholineとイオ ン性造影剤の双極-双極子反応で起きるT2短縮が cholineピークを低下させるので、イオン性造影剤より 非イオン性造影剤がより適していると考えられた.

今回の研究のlimitationとして、第1に、溶液実験の ため、腫瘍組織内とはcholineの周囲環境が大きく異 なることが挙げられる. 今回の溶液実験はファントム 内温度約25℃で行っており体温とは異なることや、 造影剤とcholineの双極子-双極子反応に影響を与 える血漿蛋白が存在しない環境下であることから, cholineの緩和時間は体内とは異なっている可能性が ある^{15,24)}. また, 腫瘍内では細胞外コンパートメント にある造影剤が細胞内コンパートメントのcholineに 対して磁化率効果を与えるが、今回の溶液実験では 造影剤とcholineは同じコンパートメントに存在する ため,磁化率効果による影響については検討ができ ていない¹⁵⁾. 第2に,実際の腫瘍で見られる3.2 ppm上 のピークには choline 以外の代謝物のピークも混在し ており, それらの代謝物が造影剤から受ける影響も, ピークの変化として捕らえている可能性があること が挙げられる. 第3に、溶液に混入した造影剤濃度の 選択は脳腫瘍内の濃度を参照して決定したため、乳腺 腫瘍内の造影剤濃度とは異なっている可能性がある こと、第4に、今回の研究では同じ造影剤種類、濃度 の溶液は3検体ずつのみのため、統計学的検討が不十 分であること,第5に,撮影に使用したTEは2種類, TRは1種類のみであったこと,が挙げられる.今後は, さらに多くの検体数を用い,多種類のTE,TRを使用 した研究を行っていく必要がある.

結論

造影剤がcholineピークに与える影響は,造影剤の 種類,濃度,TEにより異なっていた.非イオン性造 影剤の使用,TE 136 msによる測定で,cholineピーク の低下率が小さい傾向を認めたため,¹H MRSでは, それらを考慮して,適切なパラメータや使用造影剤を 決定する必要があると考えられた.

引用文献

- 1) 原田雅史, 瀧雅子, 福家由佳里, 久保均, 西谷弘, 丹黒章. 乳腺 proton MRSの測定方法と有用性: 基 礎から将来性まで. 日獨医報2009;54:60-7.
- Tse GM, Yeung DKY, King AD, Cheung HS, Yang WT. In vivo proton magnetic resonance spectroscopy of breast lesions: an update. Breast Cancer Res Treat 2007;104:249-55.
- Huang W, Fisher PR, Dulaimy K, Tudorica LA, O'Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 2004;232:585-91.
- Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, et al. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci 2005;4:35-42.
- Inoue K, Kozawa E, Mizukoshi W, Tanaka J, Saeki T, Sakurai T, et al. Usefulness of diffusion-weighted imaging of breast tumors: quantitative and visual assessment. Jpn J Radiol 2011;29:429-36.
- 6) Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F, et al. Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T1. Radiology 2005;236:465-75.
- 7) Bartella L, Morris EA, Dershaw DD, Liberman L, Thakur SB, Moskowitz C, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 2006;239:686-92.
- 8) Baek HM, Chen JH, Nie K, Yu HJ, Bahri S, Mehta RS, et al. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 2009;251:653-62.

- 9) Kousi E, Tsougos I, Vasiou K, Theodorou K, Poultsidi A, Fezoulidis I, et al. Magnetic resonance spectroscopy of the breast at 3T: pre- and postcontrast evaluation for breast lesion characterization. Scientific World Journal 2012. http:// dx.doi.org/ 10.1100/2012/754380.
- 10) Kawai H, Naganawa S, Satake H, Ishigaki S, Sakurai Y, Mori M, et al. 1H-magnetic resonance spectroscopy of the breast at 3.0-T: comparison of results obtained before and after administration of gadolinium-based contrast agent. J Magn Reson Imaging 2011;35:717-22.
- 11) Joe BN, Chen VY, Salibi N, Fuangtharntip P, Hildebolt CF, Bae KT. Evaluation of 1H-magnetic resonance spectroscopy of breast cancer preand postgadolinium administration. Invest Radiol 2005;40:405-11.
- 12) Lenkinski RE, Wang X, Elian M, Goldberg SN. Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy (MRS) of the breast. Magn Reson Med 2009;62:1286-92.
- 13) Baltzer PA, Gussew A, Dietzel M, Rzanny R, Gajda M, Camara O, et al. Effect of contrast agent on the results of in vivo ¹H MRS of breast tumors - is it clinically significant? NMR Biomed 2011;25:67-74.
- 14) Madhu B, Robinson SP, Howe FA, Griffiths JR. Effect of Gd-DTPA-BMA on choline signals of HT29 tumors detected by in vivo ¹H MRS. J Magn Reson Imaging 2008;8:1201-8.
- 15) Murphy PS, Leach MO, Rowland IJ. Signal modulation in (1) H magnetic resonance spectroscopy using contrast agents: proton relaxivities of choline, creatine, and N-acetylaspartate. Magn Reson Med 1999;42:1155-8.
- 16)Sijens PE, Dorrius MD, Kappert P, Baron P, Pijnappel RM, Oudkerk M. Quantitative multivoxel proton chemical shift imaging of the breast. Magn Reson Imaging 2010;28:314-9.
- 17) Mizukoshi W, Kozawa E, Inoue K, Saito N, Nishi N, Saeki T, et al. (1) H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. Eur Radiol 2013;23:75-83.
- 18) Smith JK, Kwock L, Castillo M. Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol 2000;21:1084-9.
- 19) Murphy PS, Leach MO, Rowland IJ. The effects of paramagnetic contrast agents on metabolite protons

in aqueous solution. Phys Med Biol 2002;47:53-9.

- 20) Moon M, Cornfeld D, Weinreb J. Dynamic contrast enhanced breast MR imaging. Magn Reson Imaging Clin N Am 2009;17:351-62.
- 21) El Khouli RH, Macura KJ, Jacobs MA, Khalil TH, Kamel IR, Dwyer A, et al. Dynamic contrastenhanced MRI of the breast: quantitative method for kinetic curve type assessment. AJR Am J Roentgenol 2009;93:295-300.
- 22) Murphy PS, Dzik-Jurasz AS, Leach MO, Rowland IJ. The effect of Gd-DTPA on T(1)-weighted choline

signal in human brain tumours. Magn Reson Imaging 2002;20:127-30.

- 23) Lima EC, Otaduy MC, Tsunemi M, Pincerato R, Cardoso EF, Rosemberg S, et al. The effect of paramagnetic contrast in choline peak in patients with glioblastoma multiforme might not be significant. AJNR Am J Neuroradiol 2013;34:80-4.
- 24) Reichenbach JR, Hackländer T, Harth T, Hofer M, Rassek M, Mödder U. 1H T1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur Radiol 1997;7:264-74.