Thesis

Tumor Necrosis Factor-αのマウス肝細胞アポトーシス抑制作用における Inhibitor of Apoptosis Proteinsの関与

埼玉医科大学内科学消化器·肝臓内科部門

菅原 通子

共同研究者:	名越	澄子(埼玉医科大学内科学消化器 · 肝臓内科部門)
	善本	隆之(東京医科大学内科学難病治療研究センター)
	持田	智(埼玉医科大学内科学消化器・肝臓内科部門)
	藤原	研司(独立行政法人労働者健康福祉機構横浜労災病院)

Inhibitory Action of Tumor Necrosis Factor- α on Hepatocyte Apoptosis may Depend on Inhibitor of Apoptosis Proteins in Mice

Kayoko Sugawara (Gastroenterology & Hepatology, Saitama Medical School, Moroyama, Iruma-gun, Saitama 350-0495, Japan)

Background and Aims Tumor Necrosis Factor- α (TNF- α) produced by activated macrophages in the hepatic sinusoids regulates the development of massive liver necrosis, and also acts as a cytokine to induce liver regeneration. It is well known that $TNF-\alpha$ binding to its receptor activates caspase cascade resulting in apoptosis, whereas this apoptosis is inhibited by NF κ B, an endogenous transcriptional factor activated by TNF- α . Moreover, inhibitor of apoptosis proteins (IAPs) are accelerated in the transcription by NF κ B, and can bind to the caspases to inactivate caspase cascade. In mice given a small amount of TNF- α , liver injury is not induced, but massive liver necrosis occurs following hepatocyte apoptosis after TNF- α administration in mice pretreated with d-galactosamine (GalN), a transcription inhibitor. In the present investigation, the relation of this inhibitory action of TNF- α on hepatocyte apoptosis to IAPs was studied using this model and other mouse models. [Methods and Results] With the following models, the hepatic expressions of IAPs were evaluated as IAP-1, IAP-2, XIAP and survivin mRNAs by RT-PCR. Hepatocyte apoptosis was determined by TUNEL method. 1) When mice received TNF- α , IAP-1 and IAP-2 were up-regulated in the liver from 1 to 5 hr with their peaks at 1 hr, but the expressions of XIAP and survivin were at the control levels until 8 hr. However, pretreatment with GalN before 30 min showed apoptosis in half of hepatocytes at 8 hr after TNF- α administration, with IAP-1 and IAP-2 expressions at the control levels at 1 hr. 2) Serum TNF- α concentration was increased later than 1 hr after endotoxin dosing in mice pretreated with P. acnes, but hepatocyte apoptosis was absent until 8 hr. Hepatic expressions of IAP-1 and IAP-2 were increased forming their peaks at 2 hr, but hepatic expressions of XIAP and survivin were unchanged until 8 hr. 3) IAP-1, IAP-2 and XIAP expressions were not changed from 10 min to 5 days after 70% liver resection, whereas survivin expression was increased at 36 and 48 hr after the operation. **[Conclusions]** The inhibitory action of TNF- α on hepatocyte apoptosis may be produced via IAP-1 and IAP-2. However, hepatocytes during liver regeneration may be protected from apoptosis through different mechanisms, especially by action of survivin. **Keywords:** apoptosis . hepatocyte. TNF- α . IAPs. NF κ B.

緒言

近年, 肝の壊死, 線維化, および再生におけるマク ロファージの働きが注目されている. 特に, 肝で活性 化したマクロファージが放出するTNF-αは, 肝細胞 壊死と肝再生に重要な役割を果たしている¹⁾.

TNF- α は I型TNF- α 受容体 (TNFR) と結合すると, Fas-associated death domain (FADD) を介してカス パーゼ・カスケードを活性化し,アポトーシスを誘導 する一方で,異なる経路によりNF κ Bを活性化する². 肝細胞では,通常TNF- α によるアポトーシスが起こ りにくいが¹⁾,NF κ Bの活性化を阻害すると,少量 のTNF- α でもアポトーシスに至ることが知られて いる^{3,4)}. これらの観察から,NF κ Bの活性化により転 写が促進される因子がアポトーシスのシグナル伝達を 阻害し,細胞死から肝細胞を保護していると考えられ てきた.

Inhibitor of apoptosis proteins (IAPs) は,種々の細胞 においてアポトーシスを阻害するが,それらは活性化 NF κ Bによって誘導される^{5.6}. IAPsはN末端に約70の アミノ酸からなる Baculovirus IAP repeat ドメインを有 し,このモチーフが様々な刺激により誘導されるアポ トーシスの抑制に必須であるとされている⁷. ヒトで は8種類のIAPsが存在する. IAPsはカスパーゼと結合 することによりカスパーゼの活性化を阻害する. IAPs に属す IAP-1, IAP-2,およびXIAPはカスパーゼ3,カ スパーゼ7,プロカスパーゼ9と, survivinはカスパー ゼ3,カスパーゼ7と結合する^{7,8}.

一方,マウスでは肝障害を誘導しない少量のTNF- α でも,あらかじめ転写阻害作用のあるd-galactosamine (GalN)を投与しておくと,広汎な肝壊死を惹起する(GalN/TNF- α モデル)⁹⁾.この障害肝モデルでは TNF- α によるNF κ Bの活性化にGalNの投与は影響しないことから¹⁰⁾,GalNの作用は,活性化したNF κ Bにより促進されるアポトーシス抑制因子の発現を阻害していると推定される.

また,死菌のPropionibacterium acnes (P. acnes)を前 投与したラットにエンドトキシンを投与すると,活性 化した肝マクロファージが類洞内皮細胞を破壊し,類 洞内にフィブリンが沈着して広汎な肝細胞壊死が生 じる (P. acnes /エンドトキシンモデル)¹¹⁾. このモデル においては,血中TNF-α値が一過性に上昇し¹¹⁾,エン ドトキシンと同時に抗TNF-α抗体を投与すると肝障 害が抑制されることが判明しており¹²⁾,これらから, TNF-αは類洞内皮細胞を障害した結果,フィブリン 沈着をきたすと考えられる.

さらに,70%部分肝切除後のマウスの残存肝で はsham術後に比べて,抗Fas抗体の投与によりアポ トーシスに至る肝細胞の数が少ないことが報告さ れている¹³.部分肝切除後の早期に血中TNF-α値は 上昇し¹⁴, 肝再生促進に関与していると考えられてい るが, 正常マウスにあらかじめTNF-αを投与してお くと, Fasを介した肝細胞アポトーシスが抑制される ことから¹³, 部分肝切除後に増加するTNF-αは, アポ トーシスに抑制的に作用している可能性がある.

本研究では、TNF-αの抗アポトーシス作用とIAPs の肝における発現を、GalN/TNF-αモデルと*P. acnes /* エンドトキシンモデル、および部分肝切除後のマウス を用いて検討した.

方法

1. 実験計画(Fig. 1)

6週齢の雄BALB/cマウスを実験に供し、血液と肝の採取はエーテル麻酔下で行った.

血中TNF-α値とalanine aminotransferase(ALT)活性 をキット(Genzyme Corp., MA と Iatron Lab., Tokyo) で測定し,摘出肝は10%ホルマリン固定,または液体 窒素で凍結後-80℃保存した.マウスの飼育および実 験に際しては,埼玉医科大学動物実験指針を遵守した.

- 実験1:22匹に20 mgのGalNまたは生食を腹腔内 投与し、その30分後に0.5 μgのTNF-αまたは生食 を静注した.血液と肝をTNF-α投与1,5,または8 時間後に採取した.
- 2) 実験2:15匹に死菌*P. acnes* 1 mgを静注し、その7 日後に1 mgのエンドトキシンを静注した.血液と

TNF- α 0.5 µg or saline

GalN 20mg or saline

Experiment 2. Propionibacterium acnes (P. acnes)/endotoxin model

Experiment 3. Partial hepatectomy (Hx) model

***** at 0, 10, and 30 min and 1, 2, 6, 12, 24, 36, 48, 72, 96, and 120 hr

Fig. 1. Experimental designs. *: The blood and liver were collected.

肝をエンドトキシン投与の直後, 1, 2, 5, または 8時間後に採取した.

 3) 実験3:22匹にエーテル麻酔下で70%部分肝切除 を行い,血液と肝を手術の直後,10分,30分,1,2,6, 12,24,36,48,72,96,または120時間後に採取した.
 2. 肝組織像の観察と肝細胞のアポトーシスおよび

mitotic indexの算定

ホルマリン固定した肝をパラフィン包埋して切片 を作成し、ヘマトキシリン・エオジン染色した上で、 肝組織像を検鏡した. Mitotic indexは、各切片につき 3,000個以上の肝細胞を算定した.また、アポトーシス の数はTUNEL法(Integren Co., NY)を用いて、各切片 につき1,000個以上の肝細胞で算定した.

3. RT-PCRによるIAPs発現量の評価

凍結肝組織からRNAを抽出し、cDNAをキット (GIBCO BRL, Life Technologies, Inc., MD) により合成 した. Table 1に用いたprimerの配列を示す. PCRは 94℃を40秒, 60℃を20秒, 72℃を40秒の順に25-30サ イクルで反応させた.

結 果

1) GalN / TNF-αモデル

Fig. 2に示したように,生食のみ投与した対照マ ウスでは肝におけるIAP-1とIAP-2の発現は認めら れなかったが,TNF-αを投与すると1時間後をピー クとして5時間後まで発現が増強し,8時間後には 対照群のレベルに戻った.XIAPとsurvivinの発現 は8時間後までに変化は見られなかった.

30分前にGalNを投与しておくと,TNF- α 投与1 時間後のIAP-1とIAP-2の発現は対照レベルにまで 抑制された.肝細胞アポトーシスと肝壊死像,およ び血中ALT値の上昇は,TNF- α 投与マウスでは見 られなかったが,GalNを前投与したマウスでは, TNF- α 投与5時間後と8時間後に肝細胞アポトーシ ス,肝壊死像,血中ALT値の上昇の何れも認めら れた(Table 2).

- 2) P. acnes /エンドトキシンモデル
 - マウスにP. acnesを投与すると7日後の血中TNF-α

mRNA	Sequences	Product size (bp)
IAP-1	5'GCTTACTCGATGCAGAAGACG3'	199
	5'TTCTGTTTCACAGCATTGCAC3'	
IAP-2	5'GCCACCTAGTGTTCCTGTTCA3'	200
	5'CAACAAACTCCTGACCCTTCA3'	
XIAP	5'ACTTGAGGTCCTGATTGCAGA3'	193
	5'AGTGACCAGATGTCCACAAGG3'	
surviving	5'CAGATCTGGCAGCTGTACCTC3'	210
	5'ATGCTCCTCTATCGGGTTGTC3'	
HPRT	5'GTTGGATACAGGCCAGACTTTGTTG3'	352
	5'GAGGGTAGGCTGGCCTATAGGCT3'	

 Table 1. Primer sequences for inhibitor of apoptosis proteins (IAPs) and hypoxanthine phosphoribosyl transferase (HPRT)

Fig. 2. mRNA expressions of IAP-1, IAP-2, XIAP, survivin and HPRT, in the liver of d-galactosamine (GalN) and/or TNF- α -treated mice. The right lane of each panel shows negative control without cDNA.

Group	No. of mice	Time of killing(hr)ª	ALT (IU/l)	Apoptotic hepatocyte(%)
saline / saline	2	1	29, 37	0
GalN / saline	2	1	30, 63	0
saline / TNF- α	3	1	$57\pm49^{\circ}$	0
GalN / TNF- α	3	1	36 ± 11	0
saline / TNF- α	3	5	40 ± 4	0
GalN / TNF- α	3	5	$1741\pm1025*$	$26.0\pm13.1*$
saline / TNF- α	3	8	72 ± 25	0
GalN/ TNF-α	1 ^d	8	4243	50.7

Table 2. Serum ALT activity and hepatocyte apoptosis in the d-galactosamine(GalN) / TNF- α model

*p<0.05 vs saline / TNF- α group as control by student's *t*-test.

^a Time after administration of TNF- α .

 $^{\rm c}$ Mean \pm SD. $^{\rm d}$ Two mice died before collection of blood and liver.

値とALT活性は正常値であったが, さらにエンドト キシンを投与すると, その1時間後の血中TNF-α 値は著明に上昇し, 2時間以降は次第に低下した (Table 3).

ALT活性はエンドトキシン投与後8時間目に投 与前に比べて有意に上昇したが,肝細胞の壊死と アポトーシスは8時間目までは観察されなかった.

Fig. 3に示したように, *P. acnes*を投与したマウスでは, 肝におけるIAP-1とIAP-2の発現はエンドトキシン投与の1時間後から増強し, 2時間後にピークに達した. XIAPとsurvivinの発現は8時間後まで変化は見られなかった.

3) 部分肝切除後の再生肝モデル

Fig. 4に示したように, 肝におけるIAP-1, IAP-2, XIAPの発現は, 部分肝切除後120時間目まで変化 は見られなかったが, survivinの発現は36時間目と 48時間目に増強した.

肝細胞のmitotic indexは、術後2日目にピークに 達し、以後次第に低下した(Fig. 5).血中TNF-α値 は術後24時間目にのみ上昇(90または190 pg/ml) したが、それ以前またはそれ以降120時間目までは 低値(26 pg/ml以下)であった。

考察

TNF-αの受容体にはI型とII型がある.TNF-αは I型TNF-α受容体と結合するとアポトーシスを誘導す るとともに、異なる経路を介してNFκBを活性化する ことにより、アポトーシスを抑制する作用もあること が知られている²⁾.本研究は、その機序を知る目的で、 マウスの肝において活性化したNFκBがカスパーゼ・ カスケードを阻害するIAPsを誘導するモデルを作成 し、それらが肝細胞アポトーシスを抑制する可能性を 検討したものである.

TNF-αをマウスに投与すると, 肝におけるIAP-1 とIAP-2の発現が一過性に増強したが, GalNを前

Table 3. Serum TNF- α concentration and ALT activity in the *P. acnes /* endotoxin model

Time after endotoxin injection (hr)	TNF- α (pg/ml)	ALT (IU/1)
0	34±17ª	28土16
1	12367土6772*	28土17
2	1417土1533	47土8
5	228土175*	72土44
8	120土17*	194土92*

^aMean \pm SD of three mice. *p<0.05 vs 0 hr by *t*-test.

Fig. 3. mRNA expressions of IAP-1, IAP-2, XIAP, survivin and HPRT, in the liver of P. acnes and endotoxin-treated mice. The right lane of each panel shows negative control without cDNA.

Fig. 4. mRNA expressions of IAP-1, IAP-2, XIAP, survivin and HPRT, in the liver of partially hepatectomized mice. The right lane of each panel shows negative control without cDNA.

Fig. 5. Mitotic index of hepatocytes in mice after partial hepatectomy (Hx).

投与すると、このTNF-αの増強作用は抑制された. *P. acnes* /エンドトキシン投与マウスの肝においても IAP-1とIAP-2の発現が増強したが、これらマウスの うち、肝細胞アポトーシスが観察されたのは、GalN / TNF-α投与マウスのみであった.一方、survivinの発 現は両モデルの肝においては変化しなかったが、部分 肝切除後の残存肝において増強した.

TNF-αを投与したマウスには肝細胞アポトーシス が認められず、転写阻害作用のあるGalNを前投与す るとアポトーシスが誘導されたことから、マウスの肝 細胞においては抗アポトーシス作用をもつ蛋白の転写 を阻害すると、TNF-αはアポトーシスを誘導すると 考えられた.また、GalN / TNF-αモデルでの肝にお けるIAP-1とIAP-2発現の動態から(Fig. 2),両IAPsは TNF-αによるアポトーシスの誘導を調節する蛋白と 推定された.この推察は、これまでに報告された実験 結果からも支持される. すなわち, 肝細胞において, TNF- α はNF κ Bを活性化し、この活性化を抑制すると アポトーシスが誘導され³⁾,活性化したNFκBは様々 な細胞系におけるIAP-1, IAP-2, およびXIAPの発現 を増強すると報告されている^{5,6}. また, Wang CY.ら は、線維肉腫細胞系においてNF KBにより誘導され たアポトーシスがIAP-1, IAP-2, TNFR-associated factor (TRAF) 1, およびTRAF2を導入することにより 抑制されることを観察している[®]. さらに,IAP-1と IAP-2はカスパーゼ・カスケードの下流に位置するカ スパーゼ3とカスパーゼ7を阻害することも証明され ている⁷.

Bcl-2ファミリーに属するBcl-X_LとBfl-1もアポトー シスを抑制し、その上、NF κ Bは両者の転写を促進す るとされるが^{15,16}、その一方で、TNF- α を投与しても 肝におけるBcl-X_LのmRNAと蛋白レベルは変わらな かったとの報告もある¹⁰. さらに、GalNの前投与の有 無に拘わらず、TNF- α を投与すると肝におけるBfl-1 のmRNAレベルは増加していたとの観察があり¹⁰、 従って, GalN / TNF-αモデルにおいては, これらの 蛋白が肝細胞アポトーシスに関与している可能性は少 ないと推定される.また, GalNはredox homeostasis の破綻を介してアポトーシスを誘導する可能性を示し た報告もある^{10,17)}. IAPsとredox homeostasisとの関係 について, 今後さらに検討する必要があろう.

Table 3とFig. 3に示したように, P. acnes /エンド トキシンモデルにおいて,血中TNF-α値はエンドト キシン投与の1時間後に上昇し、さらに、その1時間 後の肝におけるIAP-1とIAP-2の発現が著明に増強し た. このモデルではTNF-αが類洞内皮細胞を障害し, その結果、類洞内にフィブリンが沈着し、広汎肝壊 死が惹起されることを考慮すると、内因性のTNF-α が肝におけるIAP-1とIAP-2の発現を促進しているも のと考えられる.一方,部分肝切除後5日までの残存 肝では、IAP-1とIAP-2の何れの発現も増強していな かった. 手術24時間後の血中TNF-α値は上昇してい たが、その値はP. acnes /エンドトキシンモデルにおけ るピーク時の15分の1以下であった. 肝切除後の残存 肝においては, 抗Fas抗体を投与しても, 正常肝に比 べて肝細胞のアポトーシスはごくわずかしか起こらな いと報告されている¹³⁾.また,NFκBの活性化を抑え たマウスに部分肝切除を行うと肝細胞アポトーシスが 起こることも報告されている¹⁸⁾.しかし,肝細胞特異 的にNF κBを抑制すると、部分肝切除後にアポトーシ スは認められないとの報告もある³⁾. 再生肝モデルに おける肝細胞アポトーシスの抵抗性については、異な る視点から今後検討する必要がある.

部分肝切除の36時間後と48時間後の残存肝におい て,survivinの発現が著明に増強していた(Fig. 4). Mitotic indexは手術後48時間目に増加し,以後次第 に低下した(Fig. 5).Survivinは特に細胞サイクルの G2/M期において細胞分裂とアポトーシスの抑制に 関与するとされている^{19,20)}.SurvivinはNFκBの活性 化とは異なる抗アポトーシス作用を発揮することか ら,その作用点については細胞増殖との関わりから検 討する必要があろう.

本研究は、in vivoで肝細胞アポトーシスと肝におけるIAP-1とIAP-2の発現との関係を観察した初めての 実験結果である.肝細胞アポトーシスに係わるIAP-1 とIAP-2の詳細な機序は不明であるが、本実験により TNF-αにより誘導されるIAP-1とIAP-2が肝細胞アポ トーシスを抑制している可能性が示唆された.また、 肝再生過程にある肝細胞においては異なる機序により 肝細胞アポトーシスが抑制されている可能性があり、 その調節因子の1つとしてsurvivinが挙げられよう.

結論

肝細胞アポトーシスに係わるIAP-1とIAP-2の詳細 な機序は不明だが、本実験によりTNF-αにより誘導 されるIAP-1とIAP-2が肝細胞アポトーシスを抑制し ている可能性が示唆された.しかし,肝再生過程にあ る肝細胞においては,異なる機序により肝細胞アポ トーシスが抑制されている可能性があり,その調節因 子の1つとしてsurvivinが考えられた.

文 献

- Tilg H, Diehl AM. Mechanisms of disease: Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000;343:1467-76.
- Natori G, Costanzo A, Guido F, Moretti F, Levrero M. Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signaling. Biochem Pharmacol 1998;56:915-20.
- Chaisson ML, Brooling JT, Ladiges W, Tsai S, Fausto N. Hepatocyte-specific inhibition of NF- κB leads to apoptosis after TNF treatment, but not after partial hepatectomy. J Clin Invest 2002;110:193-202.
- Yang X, Bialik S, Jones BE, Iimuro Y, Kitsis RN, Srinivasan A, et al. NF- κ B inactivation converts a hepatocyte cell line TNF- α response from proliferation to apoptosis. Am J Physiol 1998;275:C1058-66.
- 5) Stehlik C, Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp, J. Nuclear factor (NF)- κ B-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor α -induced apoptosis. J Exp Med 1998;188:211-6.
- 6) Wang C-Y, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr. NF- κB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP-1 and c-IAP-2 to suppress caspase-8 activation. Science 1998;281: 1680-3.
- 7) Deveraux QL, Reed JC. IAP family proteinssuppressors of apoptosis. Genes Dev 1999;13:239-52.
- Shin S, Sung B-J, Cho Y-S, Kim H-J, Ha N-C, Hwang J-I, et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 2001;40:1117-23.
- 9) Leist M, Gantner F, Bohlinger I, Tiegs G, Germann PG, Wendel A. Tumor necrosis factorinduced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol 1995;146:1220-34.
- 10) Osawa Y, Nagaki M, Banno Y, Yamada Y, Imose M, Nozawa Y, et al. Possible involvement of reactive

oxygen species in d-galactosamine-induced sensitization against tumor necrosis factor- α -induced hepatocyte apoptosis. J Cell Physiol 2001; 187:374-85.

- 11) Arai M, Mochida S, Ohno A, Ogata I, Fujiwara K. Sinusoidal endothelial cell damage by activated macrophages in rat liver necrosis. Gastroenterology 1993;104:1466-71.
- 12) Nakagawa J, Hishinuma I, Hirota K, Miyamoto K, Yamanaka T, Tsukidate K, et al. Involvement of tumor necrosis factor- α in the pathogenesis of activated macrophage-mediated hepatitis in mice. Gastroenterology 1990;99:758-65.
- 13) Takehara T, Hayashi N, Mita E, Kanto T, Tatsumi T, Sasaki Y, et al. Delayed Fas-mediated hepatocyte apoptosis during liver regeneration in mice: Hepatoprotective role of TNF-α. Hepatology 1998;27: 1643-51.
- 14) Shiratori Y, Hongo S, Hikiba Y, Ohmura K, Nagura T, Okano K, et al. Role of macrophage in regeneration of liver. Dig Dis Sci 1996;41:1939-46.
- 15) Chen C, Edelstein LC, Gelinas C. The Rel/NF- κ B family directly activates expression of the apoptosis inhibitor Bcl-x_L. Mol Cell Biol 2000;20:2687-95.
- 16)Zong WX, Edelstein LC, Chen C, Bash J, Gelinas C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF- κ B that blocks TNF α induced apoptosis. Genes Dev 1999;13:382-7.
- 17) Pierce RH, Campbell JS, Stephenson AB, Franklin CC, Chaisson M, Poot M, et al. Disruption of redox homeostasis in tumor necrosis factorinduced apoptosis in a murine hepatocyte cell line. Am J Pathol 2000;157:221-36.
- 18) Iimuro Y, Nishiura T, Hellerbrand C, Behrns KE, Schoonhoven R, Grisham JW, et al. NF κ B prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 1998;101:802-11.
- 19) Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998;396: 580-4.
- 20) Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol 1999;1:461-6.

© 2006 The Medical Society of Saitama Medical School

http://www.saitama-med.ac.jp/jsms/